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Abstract

Matrix sensing has long been studied as a pivotal low-rank optimization problem,
important both for its diverse practical applications and as a theoretical tool for
addressing non-convexity in neural network training. Traditional approaches to
such non-convex problems typically fall into two categories: local search and
convex relaxation. In this work, we examine a specific convex relaxation known
as the matrix lasso, where the nuclear norm is used as a surrogate penalization for
rank. Our key contribution is to show rigorously that this matrix lasso formulation
can certifiably recover the ground truth matrix M∗ with a low-rank solution of
the same rank. We achieve this by establishing a new theoretical connection
between the matrix lasso problem and its Burer–Monteiro factorized representation,
a sophisticated approach inspired by results from the matrix completion literature.
Furthermore, we extend our theoretical guarantees to scenarios involving finite-
variance noise, underscoring the robustness of the matrix lasso method. Thus, our
work fills a crucial gap in understanding the robustness of convex relaxations for
matrix sensing, complementing existing results that primarily focus on non-convex
factorized formulations.

1 Introduction

The low-rank matrix recovery problem (Recht et al., 2010; Candès and Plan, 2011; Mazumder et al.,
2010; Negahban and Wainwright, 2011) has gained significant attention over the past two decades
due to its wide range of applications in recommender systems, signal and image processing, control
and system identification, and machine learning (see, e.g., Mazumder et al. (2010); Davenport and
Romberg (2016); Fazel (2002); Zhou et al. (2015)). Mathematically, this problem seeks to recover
a low-rank matrix M ∈ Rn×m from noisy linear measurements given by b = A(M∗) + w, where
A : Rm×n → Rs is a linear measurement operator of the form A(M) = [⟨A1,M⟩, . . . , ⟨As,M⟩]T ,
{A1, . . . , As} ⊆ Rn×m are called sensing matrices, and w represents noise or other measurement
errors. To search for a low-rank solution that best fits the observed vector, one natural approach
is to consider the optimization problem Tao et al. (2022), which minimizes the objective function
1
2∥A(M)− b∥2 subject to the rank constraint rank(M) ≤ r∗, where r∗ = rank(M∗). Zhang et al.
(2021) prove that each asymmetric problem can be reformulated as an equivalent symmetric one:

min
M∈Rn×n

1

2
∥A(M)− b∥2, s.t. rank(M) ≤ r∗,M ⪰ 0, (1)

where M ⪰ 0 denotes that M is positive semidefinite. In this paper, we focus exclusively on the
symmetric case. Since ⟨A,M⟩ = ⟨A+A⊤

2 ,M⟩ holds for any symmetric matrix M , without loss of
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generality, we may assume that the sensing matrices Ai, i = 1, . . . , s are symmetric. Although the
model (1) guarantees that the solution exhibits low-rank structure, in many practical scenarios, the
exact value of r∗ is unknown. In this case, it is reasonable to consider the following regularized
formulation Tao et al. (2022); Chen et al. (2020):

min
M∈Rn×n

1

2
∥A(M)− b∥2 + λrank(M), s.t. M ⪰ 0, (2)

where λ > 0 is a regularization parameter. Theoretically, by appropriately tuning λ, it is possible
to obtain a desirable low-rank solution. Since the rank function is non-convex and discontinuous,
solving (2) is NP-hard in general, and it is impossible to compute a global optimal solution using
an algorithm with polynomial-time complexity Tao et al. (2022). A common strategy is to replace
rank(M) with the nuclear norm ∥M∥∗ as a convex surrogate, leading to the following matrix Lasso
model Candès and Plan (2011); Wang et al. (2021); Negahban and Wainwright (2011):

min
M∈Rn×n

1

2
∥A(M)− b∥2 + λ∥M∥∗, s.t. M ⪰ 0. (3)

This model (3) serves as the main focus of this paper. Although (3) is a convex problem, its global
minimizer Mcvx may not coincide with M∗. Therefore, it is important to establish guarantees on the
maximum distance between any minimizer of (3) and M∗. While the nuclear norm is widely used
to promote low-rank solutions, general theoretical proof of its effectiveness remains elusive, except
in very specific cases. To address this challenge, inspired by the Burer–Monteiro approach Burer
and Monteiro (2003), a non-convex method has been proposed Srebro et al. (2004). Specifically,
M ∈ Rm×n is factorized as M = XY T with low-rank factors X ∈ Rm×r, Y ∈ Rn×r. In the
symmetric case, the factorization is simplified to M = XXT . Motivated by the following result
(Mazumder et al., 2010, Lemma 6),

∥M∥∗ = min
XY T=M, r≥rank(M)

1

2
(∥X∥2F + ∥Y ∥2F ), (4)

we observed that if the solution Mcvx to (3) satisfies rank(Mcvx) ≤ r, it must coincide with the
solution to Chen et al. (2020); Mazumder et al. (2010)

min
X∈Rn×r

1

2
∥A(XXT )− b∥2 + λ∥X∥2F . (5)

Although the model (5) naturally yields low-rank solutions and significantly reduces computational
complexity, it still poses two major challenges. First, as in model (1), the choice of the rank parameter
r remains an open issue. Second, model (5) is non-convex, making it difficult to guarantee finding a
global optimal solution.

Nevertheless, despite potential differences between the solutions to (3) and (5) due to rank mismatches,
the non-convex model (5) plays a crucial role in understanding the behavior of the convex relaxation
(3). In this paper, we establish conditions under which the convex and non-convex formulations are
equivalent, and further provide an error estimate for the convex model (3).

1.1 Related work

We briefly review existing literature on low-rank matrix recovery problems, with particular emphasis
on the matrix Lasso model (3), which is the focus of our study.

We begin with defining the restricted isometry property. Recht et al. (2010) first proposed the
extension of compressed sensing theory to the low-rank matrix recovery setting. In their context, the
restricted isometry property (RIP), originally developed for sparse vector recovery, was generalized
to matrices. This property plays a critical role in ensuring that sufficient information is retained.
Definition 1. (Restricted Isometry Property) (Recht et al., 2010, Definition 3.1) Linear operator
A : Rm×n → Rs satisfies (r, δr)-RIP if any m× n matrix M with rank ≤ r,

(1− δr)∥M∥2F ≤ ∥A(M)∥2 ≤ (1 + δr)∥M∥2F . (6)

1.1.1 Convex relaxation model

One of the first theoretical guarantees based on RIP for the matrix Lasso model (3) was first introduced
by Candès and Plan (2011). They established error bounds for the matrix Dantzig selector and, by

2



leveraging its connection to the matrix Lasso model (3), derived analogous estimation guarantees for
the latter. Specifically, they showed that if the linear measurement operator A satisfies the (4r∗, δ)-
RIP with δ < (3

√
2 − 1)/17, and the noise w obeys ∥A∗(w)∥2 ≤ λ/2, then the solution Mcvx to

the matrix Lasso problem satisfies ∥Mcvx −M∗∥F ≤ Cδ
√
rλ, where Cδ is a constant depending

only on δ.

Further developments were made in Negahban and Wainwright (2011), where the authors analyzed
the matrix Lasso model (3) and its variants under a restricted strong convexity condition. However,
to the best of our knowledge, theoretical analysis of the convex model (3) has remained relatively
limited.

A notable recent advance is attributed to Wang et al. (2021), which was designed to weaken the RIP
requirement. They analyzed the recovery guarantees under the (tr∗, δ)-RIP with t > 0 and δ ≤√
(t− 1)/t. The recovery conditions align with those in the constrained nuclear norm minimization

setting discussed in Cai and Zhang (2014), ensuring exact recovery in the noiseless case.

Finally, McRae (2024) studied the conditions under which the matrix Lasso model has a unique low-
rank solution. They showed that under the (2r∗, δ)-RIP and the noise condition δ + ∥A∗(w)∥2/λ ≤
1/16, the solution to the matrix Lasso model is unique and satisfies rank(Mcvx) ≤ 11r∗/10.

Another widely studied convex approach to the low-rank matrix recovery problem is the constrained
nuclear norm minimization model, typically formulated as

min
M∈Rm×n

∥M∥∗, s.t. A(M)− b ∈ S, (7)

where S is a bounded set. Recht et al. (2010) proved that exact recovery for the model (7) is possible
in the noiseless case (i.e. S = {0}) under suitable RIP assumption. Cai and Zhang (2013) established
sharp thresholds, showing that exact recovery is guaranteed if the operator satisfies δr∗ < 1/3. Cai
and Zhang (2014) extended the analysis to the more general (tr∗, δ)-RIP condition with t > 4/3,
and provided guarantees for both noiseless and noisy settings. More recently, Yalcin et al. (2023)
investigated recovery performance in the special case where M ⪰ 0 and provided conditions under
which exact recovery is guaranteed via the SDP model.

1.1.2 Non-convex model

Due to the fact that the Burer–Monteiro factorization inherently enforces the low-rank structure,
recent non-convex approaches often directly tackle the following formulation:

min
X∈Rn×r

1

2
∥A(XXT )− b∥2. (8)

This line of research primarily focuses on analyzing the optimization landscape of the non-convex
formulation (8), with particular emphasis on identifying RIP conditions that guarantee the absence of
spurious local minima (i.e., local minima that are not global) in the noiseless setting, as well as on
establishing RIP-based error bounds for local minimizers in the presence of noise.

In the noiseless setting, a series of works have established increasingly sharp RIP thresholds to
ensure the absence of spurious local minima in non-convex matrix sensing. Bhojanapalli et al. (2016)
showed that δ ≤ 1/5 suffices for exact recovery, while subsequent work by Zhang et al. (2019);
Zhang and Zhang (2020) proved that the bound δ < 1/2 is tight. This condition was further extended
to general objectives by Bi and Lavaei (2020).

In the presence of noise, Zhang et al. (2018) demonstrated that δ ≤ 1/35 ensures that all local minima
are near the ground truth. Ma et al. (2022) sharpened this result for the quadratic objective, showing
that δ < 1/2 is both necessary and sufficient, even under general finite-variance noise. More recently,
Ma and Sojoudi (2023) extended these results to general objectives.

Most of the aforementioned results are established under the assumption that the factorization rank
exactly matches the true rank, i.e., r = r∗. In contrast, over-parameterization (i.e., using a rank
r > r∗) may also arise in practical situations and has recently attracted increasing attention. Ma et al.
(2023) established global error bounds and polynomial-time convergence under arbitrary initialization.

Lastly, unlike the regularization (4) derived from nuclear norm, asymmetric matrix sensing often
incorporates regularization ∥XTX − Y TY ∥2F to align asymmetric factorizations with symmetric
models Ge et al. (2017); Zhang et al. (2021).
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Table 1: Comparison of low-rank matrix recovery models

Model Convex/ Parameter Advantages Disadvantages
Non-convex Dependence

(2) Non-convex λ Direct rank control; inter-
pretable

NP-hard; no poly-time global
solver

(3) Convex λ Global optimum via convex
solvers;

rank(Mcvx) may not march r∗

(5) Non-convex r, λ Low-rank solution; Low storage
and computational cost

Must choose r; possible spuri-
ous local minima

(7) Convex S Exact recovery in noiseless case;
no rank tuning

Large-scale SDP hard

(8) Non-convex r Low-rank solution; Low storage
and computational cost

Requires correct r; spurious lo-
cal minima

1.2 Motivation: Insights from Matrix Completion

The matrix completion problem can be viewed as a special case of the matrix sensing problem, where
the observations take the form b = PΩ(M

∗) + w, where Ω denotes the set of observed entries, and
PΩ is the projection onto the set Ω. In general, the matrix completion problem does not satisfy the
RIP condition. Chen et al. (2020) studied the following convex regularized formulation:

min
M∈Rm×n

1

2
∥PΩ(M)− b∥2 + λ∥M∥∗. (9)

They further analyzed its non-convex counterpart

min
X∈Rm×r, Y ∈Rn×r

1

2
∥PΩ(XY ⊤)− b∥2 + λ

2
(∥X∥2F + ∥Y ∥2F ), (10)

and proved that there exists an approximate critical point of this non-convex formulation (10) serving
as an extremely tight approximation to the solution of the convex problem. This equivalence allows
the statistical guarantees of the non-convex model (10) to be transferred to its convex model (9). Our
work is inspired by this line of analysis in Chen et al. (2020).

Many existing analyses of matrix sensing, such as that of Wang et al. (2021), do not fully exploit
first-order information. These studies typically derive error bounds that apply to any point whose
objective function value lies below that of the ground truth M∗, without requiring the point to be a
stationary point or local minimizer. In contrast, our analysis adopts the strategy that is closely aligned
with the approach in Chen et al. (2020), which explicitly utilizes the first-order optimality conditions
of stationary points to derive sharper error estimation guarantees.

1.3 Our contributions

This paper makes the following key contributions:

1. We establish a novel RIP-based bound for the composition A∗A in the low-rank setting. Specifi-
cally, in Proposition 1, we show that if the linear operator A satisfies the (r, δr)-RIP with δr < 2/3,
then for any matrix M of rank at most r, the operator A∗A is well-conditioned in the Frobenius
norm.

2. Building on Proposition 1, we demonstrate that under appropriate conditions, the solution to the
convex formulation (3) coincides with a stationary point of the non-convex problem (5).

3. We establish sufficient conditions under which the non-convex objective exhibits local strong
convexity in a neighborhood of the ground truth. This improves the result in Chen et al. (2020), which
only guarantees restricted strong convexity. Building on this local curvature property, we further
prove the existence of a stationary point near the ground truth.

4. Our main theoretical result establishes sufficient conditions for the convex formulation (3) to have
a unique solution whose rank exactly matches that of the ground truth matrix. We also derive an error
bound. To the best of our knowledge, this is the first result that rigorously guarantees rank recovery
for the convex model (3) in the noisy setting.
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Table 2: Comparison of theoretical recovery guarantees for the matrix Lasso model (3).

Reference Assumptions Error estimation rank(Mcvx)/
uniqueness

Candès and Plan
(2011)

(4r∗, δ)-RIP; δ < (3
√
2−1)/17;

∥A∗(w)∥2 ≤ λ/2
Cδ

√
r∗ λ – / –

Wang et al. (2021) (tr∗, δ)-RIP; δ ≤
√

(t− 1)/t; Cλ/ε,δ

√
r∗λ – / –

∥w∥ ≤ ε

McRae (2024) (2r∗, δ)-RIP; – ≤ 1.1 r∗ / Yes
δ + ∥A∗(w)∥2/λ ≤ 1/16

This work (11) and (12) (13) r∗ / Yes

Table 2 summarizes the theoretical recovery guarantees for the matrix Lasso model (3). Our analysis
achieves several notable improvements. First, while the RIP requirement in our work is relatively
stringent compared to Wang et al. (2021), the derived error estimation (13) is significantly sharper.
Second, unlike prior works such as Candès and Plan (2011) and Wang et al. (2021), which do not
explicitly ensure the uniqueness or the exact rank of the recovered solution, our result guarantees that
the convex solution exactly recovers the rank-r∗ structure and is unique. This contributes to a better
understanding of the rank recovery behavior of the matrix Lasso model.

Notations Denote by A∗ the adjoint operator of A, so that A∗(x) is a symmetric matrix for any
x ∈ Rs. Let M∗ ∈ Rn×n be the ground truth matrix with rank r∗ and M∗ ⪰ 0, we denote by
X∗ ∈ Rn×r∗ a factor of M∗ such that M∗ = X∗X∗T . ∥v∥ denotes the Euclidean norm of a vector v,
while ∥M∥F and ∥M∥2 denote the Frobenius norm and the operator norm (or induced ℓ2 norm) of a
matrix M , respectively. Denote by On the set of n×n orthonormal matrices. For a matrix X ∈ Rn×r

with full column rank, σi(X) denotes its i-th largest singular value and σmin(X) denotes its smallest
nonzero singular value, (i.e., the r-th largest singular value). κ denotes the condition number of the
ground truth factor X∗, i.e. κ = ∥X∗∥2/σmin(X

∗). For a point X ∈ Rn×r and a radius R > 0, we
define the closed ball centered at X with radius R as B(X,R) := {Y ∈ Rn×r | ∥Y −X∥F ≤ R}.

2 Main results

We first present our main results. In contrast to the main result in Chen et al. (2020), our analysis
leverages the properties of stationary points, which allows us to conclude not only that the solution to
the convex model (3) is unique, but also that rank(Mcvx) = rank(M∗). These results are formally
established in the following two theorems, which cover both the noiseless and noisy scenarios.
Theorem 1. Suppose that the linear operator A satisfies the (2r∗, δ)-RIP condition, the observation
is noiseless (i.e., w = 0), and the RIP constant δ satisfies 2

√
r∗κ2 ≤

√
(2− δ)/(8δ − 2δ2). Then

the solution Mcvx to the convex model (3) is unique, with rank(Mcvx) = r∗. Moreover, for any
ε > 0, there exists λ0 > 0 such that for all 0 < λ ≤ λ0, we have ∥Mcvx −M∗∥F ≤ ε.

We remark that Theorem 1 follows as a direct corollary by setting w = 0 in Theorem 2.
Theorem 2. Suppose that the linear operator A satisfies the (2r∗, δ)-RIP condition, and the noise
intensity ∥A∗(w)∥2 and the RIP constant δ satisfy

(1− δ)2∥X∗∥22
4
√
r∗κ4(3− δ)

> ∥A∗(w)∥2 + λ, ∥A∗(w)∥2 < (1− θ)λ. (11)

for some constant θ ∈ (0, 1). Then if the RIP constant δ satisfies

ϕ2

(1− δ)2∥X∗∥22
+

2ϕ

(1− δ)
< θλ

√
2− δ

8δ − 2δ2
, (12)

with ϕ =
√
r∗κ2(∥A∗(w)∥2 + λ), the solution Mcvx to convex model (3) is unique, with

rank(Mcvx) = r∗, and the following error bound holds:

∥Mcvx −M∗∥F ≤ ϕ2

(1− δ)2∥X∗∥22
+

2ϕ

(1− δ)
. (13)

5



Remark 1. For condition (12) , once the regularization parameter λ satisfies λ > ∥A∗(w)∥2,
a suitable θ ∈ (0, 1) can always be chosen. For condition (12), the left-hand side decreases
as δ becomes smaller, while the right-hand side increases to infinity as δ → 0 due to the term√
(2− δ)/(8δ − 2δ2). Consequently, there always exists δ ∈ (0, 1) such that the inequality is

satisfied. It is also worth noting that when the problem is more challenging, specifically when the
target rank r∗, the condition number κ, or the noise intensity ∥A∗(w)∥2 are large, or ∥X∗∥2 is small,
the left side of (12) becomes larger. In such scenarios, a smaller RIP constant δ is required to ensure
that condition (12) remains feasible.

Remark 2. From condition (12), error estimation (13) and the expression of ϕ, it is intuitive that
λ should be chosen close to ∥A∗(w)∥2. However, the actual value must also satisfy condition (12),
which imposes an additional dependency on the RIP constant δ. Therefore, λ must be carefully
selected to balance both conditions.

Compared to the results in Wang et al. (2021), our recovery bound (13) offers improved tightness.
Most importantly, our results assert that the recovered matrix is of the same rank of M∗, which is a
new discovery thanks to our approach of linking convex and non-convex formulations. Specifically,
(Wang et al., 2021, Theorem 4) provides the following error bound for their convex model:

∥Mcvx −M∗∥F ≤
√
r∗β1(5 + 2β2)λ+ 2(1 + 4β2 + 2β2

2)ε√
r∗(1− β2)λ

(
√
r∗β1λ+ ε), (14)

where β1 = 2/((1− δ)
√
1 + δ) and β2 = δ/(

√
(1− δ2)(t− 1)). To illustrate the superiority of our

estimation, we consider the following numerical example:

Figure 1: Comparison of the estimation error bounds obtained in this paper and in Wang et al. (2021).
Assume that A satisfies the (2, δ)-RIP condition, rank(M∗) = 1, and ∥M∗∥2 = 100. The noise
level is set as w = 0.001. The regularization parameter λ used in Wang et al. (2021) is chosen
according to (Wang et al., 2021, (20)), while, in our estimation, we set λ = 0.05.

3 On Equivalence of Convex and Non-convex Formulations

This section outlines the proof strategy and introduces the key technical tools supporting our main
result. We begin by establishing a connection between the convex formulation (3) and its non-convex
counterpart (5). In particular, we investigate the optimization landscape of the non-convex objective

f(X) =
1

2
∥A(XXT )− b∥2 + λ∥X∥2F .

Subsequently, in the next section, we show that, under suitable conditions, this non-convex objective
admits a critical point sufficiently close to the ground truth. This key result enables us to connect the
solution of the convex model (3) to the ground truth.

Our derivation strategy is partly inspired by the two-stage analytical framework in Chen et al. (2020),
where the authors study matrix completion by first establishing a connection between the convex and
non-convex formulations, and then proving-via a leave-one-out approach combined with mathematical
induction-that the non-convex objective admits a point with small gradient norm close to the ground
truth. In contrast, we study matrix sensing under the restricted isometry property, where linear
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operator A replace the projections used in matrix completion. Moreover, our error bounds are given
explicitly in terms of model parameters, avoiding undetermined or implicit constants. This ensures
that all intermediate results are precise and computable, enhancing both interpretability and practical
relevance.

We present a fundamental property of the RIP, which plays a crucial role in our analysis. The
following proposition shows that under the RIP condition, the norm of A∗(A(M)) can be bounded
in terms of ∥M∥F . The proof is provided in Appendix A.1.
Proposition 1. Suppose the linear operator A : Rm×n → Rs satisfies the (r, δr)-RIP with r ≥
2, δr < 2

3 and let A∗ denote its adjoint. Then for any M with rank(M) ≤ r, it holds that

2− 3δr
2 + δr

∥M∥2F ≤ ∥A∗AM∥2F ≤ 2 + 3δr
2− δr

∥M∥2F .

From Proposition 1, it immediately follows that

∥A∗AM −M∥2F = ∥A∗AM∥2F + ∥M∥2F − 2⟨A∗AM,M⟩

≤ 2+3δr
2−δr

∥M∥2F + ∥M∥2F − 2(1− δr)∥M∥2F =
8δr−2δ2r
2−δr

∥M∥2F .
(15)

We also recall some properties of the nuclear norm, particularly its subdifferential structure. Let
M ∈ Rn×n be a rank-r positive semidefinite matrix with eigenvalue decomposition M = QΣQT ,
where Q ∈ Rn×r has orthonormal columns and Σ ∈ Rr×r is diagonal with nonnegative entries. The
tangent space at M , denoted by T , is defined as (see Chen et al. (2020)): T = {QAT + BQT |
A,B ∈ Rn×r}. Let PT (·) denote the orthogonal projection onto the subspace T . Then for any
X ∈ Rn×n, the projection of X onto T is given by Chen et al. (2020) (see also (Candès and Recht,
2009, (3.5)))

PT (X) = QQTX +XQQT −QQTXQQT . (16)
Let T⊥ denote the orthogonal complement of T , and PT⊥(·) the corresponding orthogonal projection.
Then the subdifferential of the nuclear norm at M is characterized by (see (Candès and Recht, 2009,
(3.4)); see also (Cai et al., 2010, (2.6)))

∂∥M∥∗ = {QQT +W | W ∈ T⊥, ∥W∥2 ≤ 1}. (17)

The following lemma implies that the projection of the gradient ∇f(X) onto the orthogonal comple-
ment space T⊥ can be controlled by the regularization parameter, provided that XXT is sufficiently
close to M∗. A corresponding result appears as Claim 2 in Chen et al. (2020), where a similar bound
is established in the context of matrix completion. The proof is provided in Appendix A.2.
Lemma 1. Suppose that the ground truth M∗ with rank(M∗) = r∗ and the linear operator A
satisfies the (r, δ)-RIP. If there exists X with rank(X) = r∗, parameters α, β, γ > 0 such that:

∥XXT −M∗∥F < αλ

√
2− δ

8δ − 2δ2
, ∥A∗(w)∥2 < βλ,

∥∇f(X)∥F
σmin(X)

< γλ, α+ β + γ < 1.

Then, it holds that

∥PT (S)∥F ≤ ∥∇f(X)∥F
σmin(X)

, ∥PT⊥(S)∥2 ≤ (α+ β + γ)λ,

where
S = −λQQT −A∗(A(XXT )− b), (18)

X = QΛPT is singular value decomposition of X with Q ∈ Rn×r∗ ,Λ ∈ Rr∗×r∗ , P ∈ Rr∗×r∗ and
T is the tangent space of XXT .

The following theorem establishes a connection between the convex model (3) and the non-convex
model (5). Specifically, if there exists a point such that ∇f(X) is small and XXT is close to M∗,
then the solution to model (3) is guaranteed to be close to XXT as well. The proof is provided in
Appendix A.3.
Theorem 3. Suppose that the ground truth rank(M∗) = r∗ and the linear operator A satisfies the
(2r∗, δ)-RIP. Assume that there exists X with rank(X) = r∗, parameters α, β, γ, τ > 0 such that:

∥XXT −M∗∥F < αλ

√
2− δ

8δ − 2δ2
, ∥A∗(w)∥2 < βλ,

∥∇f(X)∥F
σmin(X)

< γλ, α+ β + γ + τ = 1.
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We further assume that the gradient of the objective function f(X) in model (5) satisfies:

∥∇f(X)∥F ≤ τλσmin(X)

√
r∗(1− δ)

n(1 + δ)
. (19)

Then, for any solution Mcvx to model (3),

∥Mcvx −XXT ∥F ≤ 32∥∇f(X)∥F
(1− δ)σmin(X)

.

4 The stationary point near the ground truth

In this section, we establish the existence of a stationary point in the neighborhood of the ground
truth that satisfies the assumptions required in the Theorem 3. We begin by proving that the function
f exhibits local smoothness and local strong convexity in a neighborhood of the ground truth X∗.
The proof of Lemma 2 is provided in Appendix A.4.
Lemma 2. Suppose that the linear operator A satisfies the (2r∗, δ)-RIP condition and ∥A∗(w)∥2 +
λ ≤ 3(1 + δ)C∥X∗∥22 with C = ξ(1−σ)(1−δ)

κ2(6−2δ) where the parameters ξ ∈ (0, 1], σ ∈ (0, 1). Then, the
function f is Ls-smooth over the closed ball B(X∗, C∥X∗∥2) with Ls = 10(1 + δ)∥X∗∥22.

We note that the condition: ∥A∗(w)∥2 + λ ≤ 3(1 + δ)C∥X∗∥22 is not strictly necessary. It is
imposed primarily for the sake of simplifying the expression of Ls without introducing additional
assumptions in the following analysis. Moreover, the parameters ξ and σ are chosen to ensure that the
neighborhood (ball) considered here is consistent with that in the subsequent lemma, which facilitates
the argument in the following lemmas and theorems.

Due to the presence of the RIP property in the matrix sensing problem, as opposed to the matrix
completion setting considered in Chen et al. (2020), where only a restricted local strong convexity
was established, we can derive the strong convexity of f(X) in a neighborhood around X∗, as shown
in the following lemma. Its proof is provided in Appendix A.5.
Lemma 3. Suppose that the linear operator A satisfies the (2r∗, δ)-RIP condition and ∥A∗(w)∥2 −
λ ≤ (3− δ)C∥X∗∥22 with C = ξ(1−σ)(1−δ)

κ2(6−2δ) , where the parameters ξ ∈ (0, 1], σ ∈ (0, 1). Then, the
function f is Lc-strong convex over the closed ball B(X∗, C∥X∗∥2) with Lc = 4σ(1− δ)σ2

min(X
∗).

Now, we proceed to show that a stationary point of f(X) can be found close to the ground truth
M∗. Specifically, we apply the gradient descent method (Algorithm 1) to the model (5) to locate this
stationary point. Furthermore, we use mathematical induction to prove that the generated sequence
remains in the closed ball B(X∗, C∥X∗∥2) throughout the iterations. This technique has also been
used in Chen et al. (2020) to control the iterations within a predefined neighborhood, providing a
useful framework for our proof. The proof of Theorem 4 is provided in Appendix A.6.

Algorithm 1: Construction of an approximate solution.

1 Initialization: X0 = X∗.
2 Gradient descent: for k = 0, 1, . . . do

Xk+1 = Xk − η∇f(Xk) = Xk − η(A∗A(XkXkT −M)Xk + λXk),

here η > 0 is the step size.

Theorem 4. Suppose that the linear operator A satisfies the (2r∗, δ)-RIP condition, and
(1− δ)2∥X∗∥22
4κ4(3− δ)

>
√
r∗(∥A∗(w)∥2 + λ). (20)

Let the sequences Xk be generated by Algorithm 1, and suppose that the step size in Algorithm 1
satisfies

η ≤
Lc − 2

√
r∗(∥A∗(w)∥2+λ)

C

L2
s − ( 2

√
r∗(∥A∗(w)∥2+λ)

C )2
, (21)
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where C = ξ(1−σ)(1−δ)
κ2(6−2δ) , ξ ∈ ( 4

√
r∗κ4(3−δ)(∥A∗(w)∥2+λ)

(1−δ)2∥X∗∥2
2

, 1], and σ = 1
2 . Then, for any Xk ∈ {Xk},

∥XkHk −X∗∥F ≤ C∥X∗∥2,

where Hk := argmin
R∈Or∗

∥XkR−X∗∥F .

Next, we prove that with a proper choice of the step size, the sequence of function values exhibits a
sufficient decrease. The proof is provided in Appendix A.7.
Lemma 4. Under the assumptions of Theorem 4, if the step size also satisfies

η ≤ min

{
Lc − 2

√
r∗(∥A∗(w)∥2+λ)

C

L2
s − ( 2

√
r∗(∥A∗(w)∥2+λ)

C )2
,
1

Ls

}
,

then
f(Xk+1) ≤ f(Xk)− η

2
∥∇f(Xk)∥2F .

Based on the result of Lemma 4, we now show that the sequence generated by Algorithm 1 has all
accumulation points which are stationary points of the non-convex model (5). The proof is provided
in Appendix A.8.
Lemma 5. Assume that the same conditions as in Theorem 4 hold. Then, every accumulation point
of {XkHk} lies in B(X∗, C∥X∗∥2) and is a stationary point of the non-convex formulation (5).

Based on the above preparations, we now present an error estimation for the non-convex model (5).
The proof is provided in Appendix A.9.
Theorem 5. Suppose that the linear A satisfies the (2r∗, δ)-RIP condition and

(1− δ)2∥X∗∥22
4κ4(3− δ)

>
√
r∗(∥A∗(w)∥2 + λ).

Let M̄ = X̄X̄T , where X̄ is an accumulation point of {XkHk} and Hk = argmin
R∈Or∗

∥XkR−X∗∥F .

Then, it holds that

∥M̄ −M∗∥F ≤ r∗(∥A∗(w)∥2 + λ)2κ4

(1− δ)2∥X∗∥22
+ 2

√
r∗(∥A∗(w)∥2 + λ)κ2

(1− δ)
.

5 Proof of main result

By combining Theorems 3 and 5, we establish the proof of Theorem 2.

Proof of Theorem 2 . From Theorem 5, the nonconvex problem admits a stationary point X̄ such
that ∇f(X̄) = 0. This ensures that the condition (19) in Theorem 3 is satisfied. Letting α → θ,
β → 1− θ, γ → 0, τ → 0, Theorem 3 yields

∥Mcvx − M̄∥F = 0

for any local solution Mcvx to the convex model (3). Here, M̄ is the matrix obtained in Theorem 5.
This implies that Mcvx is unique, rank(Mcvx) = rank(M̄) = r∗, and the bound (13) holds.

6 Conclusion

To summarize, this work advances the theoretical understanding of low-rank matrix recovery via
convex and non-convex approaches in matrix sensing. We introduce a new RIP-based bound for
A∗A, generalize the convex–nonconvex equivalence to matrix sensing, and provide new insights into
the landscape of the non-convex formulation near the ground truth. Most notably, we offer the first
rigorous result ensuring that the convex solution not only achieves low recovery error but also exactly
matches the rank of the ground truth under suitable conditions.
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A Technical Appendices and Supplementary Material

A.1 Proof of Proposition 1

To facilitate our analysis, we first recall Lemma 2.1 in Candès (2008), which establishes a fundamental
property of the RIP condition and will be used in our proof.
Lemma 6. (Candès, 2008, Lemma 2.1) Suppose the linear operator A : Rm×n → Rs satisfies the
(2r, δ2r)-RIP. Then, for any M1,M2 with rank(M1), rank(M2) ≤ r, it holds that

|⟨A(M1),A(M2)⟩ − ⟨M1,M2⟩| ≤
δ2r
2

(
∥M1∥2F + ∥M2∥2F

)
.

Proof of Proposition 1. Without causing confusion, we simplify the expressions as follows: we
denote the vector AM := A(M), the matrix A∗AM := A∗(A(M)), and the vector AA∗AM :=
A(A∗(A(M))). For each i, define the matrix Mi ∈ Rm×n such that its k-th row satisfies [Mi]k∗ =

[M ]k∗ for k = i and [Mi]k∗ = 0⃗ for k ̸= i, where [M ]k∗ denote the k-th row of M , 0⃗ is the 1× n
zero vector. Then, M =

∑
i

Mi. Since A is linear, we have

|⟨AA∗AM,AM⟩ − ⟨A∗AM,M⟩|
= |⟨A(

∑
i

A∗AMi),A(
∑
i

Mi)⟩ − ⟨
∑
i

A∗AMi,
∑
i

Mi⟩|

= |⟨
∑
i

A(A∗AMi),
∑
i

A(Mi)⟩ − ⟨
∑
i

A∗AMi,
∑
i

Mi⟩|

= |
∑
i

⟨A(A∗AMi),A(Mi)⟩ − ⟨A∗AMi,Mi⟩|

≤
∑
i

|⟨A(A∗AMi),A(Mi)⟩ − ⟨A∗AMi,Mi⟩|.

Since rank(A∗AMi) ≤ 1 ≤ r
2 , applying Lemma 6 yields

|⟨AA∗AM,AM⟩ − ⟨A∗AM,M⟩|
≤

∑
i

δr
2 (∥A

∗AMi∥2F + ∥Mi∥2F )

= δr
2 (∥A

∗AM∥2F + ∥M∥2F ).
Thus,

−δr
2
(∥A∗AM∥2F + ∥M∥2F ) ≤ ∥A∗AM∥2F − ∥AM ||2 ≤ δr

2
(∥A∗AM∥2F + ∥M∥2F ). (22)

From the left-hand side of (22), we have

∥AM ||2 − δr
2
(∥A∗AM∥2F + ∥M∥2F ) ≤ ∥A∗AM∥2F .

Using the definition of the RIP,

(1− δr)∥M ||2F − δr
2 ∥M∥2F ≤ ∥A∗AM∥2F + δr

2 ∥A
∗AM∥2F ,

2−3δr
2+δr

∥M∥2F ≤ ∥A∗AM∥2F .

Similarly, from the right-hand side of (22), we obtain

∥A∗AM∥2F ≤ 2 + 3δr
2− δr

∥M∥2F .

which concludes the proof.

A.2 Proof of Lemma 1

Proof of Lemma 1. From the definition of f(X), we obtain

2A∗(A(XXT )− b)X = −2λX +∇f(X). (23)

By right-multiplying both sides of (18) with X and substituting the result into the left-hand side of
(23), we have

−2λQQTX − 2SX = −2λX +∇f(X).
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Substituting X = QΛPT into the previous equation, we get

−λQQ⊤QΛPT − SQΛPT = −λQΛPT +
1

2
∇f(X),

which leads to
SQ = −1

2
∇f(X)PΛ−1.

Hence,

∥SQ∥F ≤ 1

2
∥∇f(X)P∥F ∥Λ−1∥2 ≤ 1

2
∥∇f(X)∥F ∥P∥2∥Λ−1∥2 =

∥∇f(X)∥F
2σmin(X)

.

Thus, using the projection formulation (16), (see (Chen et al., 2020, (65))) we estimate

∥PT (S)∥F ≤∥QQTS + SQQT −QQTSQQT ∥F
=∥QQTS(I −QQT ) + SQQT ∥F
≤∥QTS(I −QQT )∥F + ∥SQ∥F

≤2∥SQ∥F ≤ ∥∇f(X)∥F
σmin(X)

.

We now prove ∥PT⊥(S)∥2 ≤ (α+ β + γ)λ. From (18) and b = A(M∗) + w, we have

S + λQQT +XXT = M∗ −A∗A(XXT −M∗) +A∗(w) +XXT −M∗.

Substituting X = QΛPT into the left-hand side of the previous equation:

S + λQQT +QΛ2QT = M∗ + (XXT −M∗)−A∗A(XXT −M∗) +A∗(w).

Due to S = PT⊥(S) + PT (S), we obtain

PT⊥(S) + λQQT +QΛ2QT = M∗ + (XXT −M∗)−A∗A(XXT −M∗) +A∗(w)− PT (S).

Appling Weyl’s inequality, we have for i > r∗,

σi(M
∗ + (XXT −M∗)−A∗A(XXT −M∗) +A∗(w)− PT (S))

≤σi(M
∗) + ∥(XXT −M∗)−A∗A(XXT −M∗) +A∗(w)− PT (S)∥2

≤∥(XXT −M∗)−A∗A(XXT −M∗)∥2 + ∥A∗(w)∥2 + ∥PT (S)∥2
≤∥(XXT −M∗)−A∗A(XXT −M∗)∥F + ∥A∗(w)∥2 + ∥PT (S)∥F
<(α+ β + γ)λ < λ,

where the second inequality uses the fact that rank(M∗) = r∗, and the fourth inequality follows
from (15) and conditions on α, β, γ. On the other hand, for i ≤ r∗,

σi

(
λQQT +QΛ2QT

)
≥ λ.

Since λQQT +QΛ2QT ∈ T , it follows that

∥PT⊥(S)∥2 < (α+ β + γ)λ,

which concludes the proof.

A.3 Proof of Theorem 3

Proof of Theorem 3. Let ∆ = Mcvx −XXT . By the definition of Mcvx, we consider the following
inequality for ∆:

λ∥XXT ∥∗ +
1

2
∥A(XXT )− b∥2 ≥ λ∥XXT +∆∥∗ +

1

2
∥A(XXT +∆)− b∥2.

Using the convexity of the nuclear norm ∥ · ∥∗ and its subgradient QQT +W , where Q ∈ Rn×r∗ , of
XXT given in (17), the previous inequality leads to

−λ⟨QQT ,∆⟩ − λ⟨W,∆⟩ −
〈
A(XXT )− b,A(∆)

〉
≥ 1

2
∥A(∆)∥2.
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Choosing W such that ⟨W,∆⟩ = ∥PT⊥(∆)∥∗ (Candès and Recht, 2009, Lemma 3.1)(also see (Chen
et al., 2020, Lemma 6)), we have

−λ⟨QQT ,∆⟩ − λ∥PT⊥(∆)∥∗ −
〈
A∗(A(XXT )− b),∆

〉
≥ 1

2
∥A(∆)∥2.

Substituting the expression of S from (18), we obtain

⟨S,∆⟩ − λ∥PT⊥(∆)∥∗ = ⟨PT (S),∆⟩+ ⟨PT⊥(S),∆⟩ − λ∥PT⊥(∆)∥∗ ≥ 1

2
∥A(∆)∥2 ≥ 0. (24)

Applying the Cauchy-Schwarz inequality and duality inequality to (24) leads to

−(∥PT (S)∥F ∥PT (∆)∥F + ∥PT⊥(S)∥2∥PT⊥(∆)∥∗) + λ∥PT⊥(∆)∥∗ ≤ 0.

Using the bound on ∥PT⊥(S)∥2 from Lemma 1, we find that

∥PT (S)∥F ∥PT (∆)∥F ≥ (λ− ∥PT⊥(S)∥2)∥PT⊥(∆)∥∗ ≥ τλ∥PT⊥(∆)∥∗.

Moreover, by the upper bound on ∥PT (S)∥F , we further have

∥∇f(X)∥F
σmin(X)

∥PT (∆)∥F ≥ τλ∥PT⊥(∆)∥∗. (25)

By the gradient condition (19) and
√

r∗(1−δ)
n(1+δ) ≤ 1, it follows that

∥PT (∆)∥F ≥ ∥PT⊥(∆)∥∗ ≥ ∥PT⊥(∆)∥F . (26)

Next, from (24), we can also derive

1

2
∥A(∆)∥2 ≤ ∥PT (S)∥F ∥PT (∆)∥F − (λ− ∥PT⊥(S)∥2)∥PT⊥(∆)∥∗

≤ ∥PT (S)∥F ∥PT (∆)∥F − τλ∥PT⊥(∆)∥∗
≤ ∥PT (S)∥F ∥PT (∆)∥F

≤ ∥∇f(X)∥F ∥∆∥F
σmin(X)

,

(27)

where the last inequality uses the upper bound on ∥PT (S)∥F and ∥PT (∆)∥F ≤ ∥∆∥F . Additionally,
using the RIP condition of the linear operator A, we have

∥A(∆)∥ = ∥A(PT (∆)) +A(PT⊥(∆))∥ ≥ ∥A(PT (∆))∥ − ∥A(PT⊥(∆))∥

≥
√
1− δ∥PT (∆)∥F −

√
n

r∗
(1 + δ)∥PT⊥(∆)∥F .

(28)

In the last inequality, we use that rank(PT (∆)) ≤ 2r∗ and rank(PT⊥(∆)) ≤ n− 2r∗. Furthermore,
the matrix PT⊥ can be decomposed into at most ⌈n−2r∗

r∗ ⌉ components, each being a matrix of rank at
most r∗. Substituting the gradient condition (19) into (25), we obtain√

n

r∗
(1 + δ)∥PT⊥(∆)∥F ≤

√
n

r∗
(1 + δ)∥PT⊥(∆)∥∗ ≤

√
1− δ

2
∥PT (∆)∥F ,

which substitutes into (28) implies

∥A(∆)∥ ≥
√
1− δ

2
∥PT (∆)∥F .

Finally, from (26), we obtain

∥∆∥F ≤ ∥PT (∆)∥F + ∥PT⊥(∆)∥F ≤ 2∥PT (∆)∥ ≤ 4√
1− δ

∥A(∆)∥.

Substituting it into (27), we conclude

∥∆∥F ≤ 32∥∇f(X)∥F
(1− δ)σmin(X)

.
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A.4 Proof of Lemma 2

Proof of Lemma 2. For any V ∈ Rn×r, we have

⟨V, ∇2f(X)[V ]⟩
= 2⟨V, A∗(A(XV T + V XT ))X +A∗(A(XXT )− b)V ⟩+ 2λ∥V ∥2F
= 4⟨V XT , A∗(A(V XT ))⟩+ 2⟨V V T , A∗(A(XXT −X∗X∗T ))⟩

−2⟨V V T , A∗(w)⟩+ 2λ∥V ∥2F
= 4∥A(V XT )∥2 + 2⟨A(V V T ), A(XXT −X∗X∗T )⟩ − 2⟨V V T , A∗(w)⟩

+2λ∥V ∥2F ,

(29)

where the second equality uses the fact that A(XV T ) = A(V XT ). Applying the Cauchy-Schwarz
inequality and duality inequality, we obtain

⟨V, ∇2f(X)[V ]⟩
≤ 4∥A(V XT )∥2 + 2∥A(V V T )∥∥A(XXT −X∗X∗T )∥+ 2∥V V T ∥∗∥A∗(w)∥2

+2λ∥V ∥2F .
(30)

For the first term, invoking the RIP property, we have

4∥A(V XT )∥2 ≤ 4(1 + δ)∥V XT ∥2F
= 4(1 + δ)⟨V TV,XTX⟩
≤ 4(1 + δ)∥V TV ∥∗∥XTX∥2
≤ 4(1 + δ)∥V ∥2F (∥XXT −X∗X∗T ∥2 + ∥X∗X∗T ∥2),

(31)

where the last inequality follows from ∥V TV ∥∗ = ∥V ∥2F and the triangle inequality. Similarly, for
the second term, applying the RIP property yields

2∥A(V V T )∥∥A(XXT −X∗X∗T )∥ ≤ 2(1 + δ)∥V V T ∥F ∥XXT −X∗X∗T ∥F . (32)

Substituting (31) and (32) into (30), we obtain

⟨V, ∇2f(X)[V ]⟩
≤ 4(1 + δ)∥V ∥2F ∥X∗∥22 + 6(1 + δ)∥V ∥2F ∥XXT −X∗X∗T ∥F + 2∥V ∥2F ∥A∗(w)∥2

+2λ∥V ∥2F .
(33)

Observe that ∥XXT −X∗X∗T ∥F can be bounded as

∥XXT −X∗X∗T ∥F
= ∥XXT −XX∗T +XX∗T −X∗X∗T ∥F
≤ ∥XXT −XX∗T ∥F + ∥XX∗T −X∗X∗T ∥F
≤ ∥X∥2∥XT −X∗T ∥F + ∥X −X∗∥F ∥X∗T ∥2
≤ (∥X −X∗∥2 + ∥X∗∥2)∥X −X∗∥F + ∥X −X∗∥F ∥X∗∥2
≤ ∥X −X∗∥2F + 2∥X∗∥2∥X −X∗∥F .

(34)

Substituting (34) into (33) yields

⟨V, ∇2f(X)[V ]⟩
≤ (4(1 + δ)∥X∗∥22 + 6(1 + δ)(∥X −X∗∥2F + 2∥X∗∥2∥X −X∗∥F ) + 2∥A∗(w)∥2 + 2λ)∥V ∥2F .

When X ∈ B(X∗, C∥X∗∥2), it follows that

⟨V, ∇2f(X)[V ]⟩
≤ [4(1 + δ)∥X∗∥22 + 6(1 + δ)(C2 + 2C)∥X∗∥22 + 2∥A∗(w)∥2 + 2λ]∥V ∥2F .

Furthermore, under the assumption ∥A∗(w)∥2 + λ ≤ 3(1 + δ)C∥X∗∥22, we have

⟨V, ∇2f(X)[V ]⟩ ≤ [4(1 + δ)∥X∗∥22 + 6(1 + δ)(C2 + 3C)∥X∗∥22]∥V ∥2F .

Finally, noting that C = ξ(1−σ)(1−δ)
κ2(6−2δ) ≤ 1

4 , we obtain

⟨V, ∇2f(X)[V ]⟩ ≤ 10(1 + δ)∥X∗∥22∥V ∥2F ,
which implies that f is Ls- smooth with Ls = 10(1 + δ)∥X∗∥22.
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A.5 Proof of Lemma 3

Proof of Lemma 3. Applying the Cauchy-Schwarz inequality and duality inequality to (29), we
obtain

⟨V, ∇2f(X)[V ]⟩
≥ 4∥A(V XT )∥2 − 2∥A(V V T )∥∥A(XXT −X∗X∗T )∥ − 2∥V V T ∥∗∥A∗(w)∥2

+2λ∥V ∥2F .
(35)

Applying the RIP property to the first term, we have

4∥A(V XT )∥2 ≥ 4(1− δ)∥XV T ∥2F
= 4(1− δ)⟨V TV,XTX⟩
= 4(1− δ)⟨V TV,X∗TX∗ −X∗TX∗ +XTX⟩
≥ 4(1− δ)(∥V X∗T ∥2F − ∥V TV ∥F ∥XTX −X∗TX∗∥F ).

(36)

Substituting (36) and (32) into (35) yields

⟨V, ∇2f(X)[V ]⟩
≥ 4(1− δ)∥V X∗T ∥2F − 4(1− δ)∥V TV ∥F ∥XTX −X∗TX∗∥F

−2(1 + δ)∥V V T ∥F ∥XXT −X∗X∗T ∥F − 2∥V ∥2F ∥A∗(w)∥2 + 2λ∥V ∥2F .
(37)

Similar to (34), we have the following bound:

∥XTX −X∗TX∗∥F ≤ ∥X −X∗∥2F + 2∥X∗∥2∥X −X∗∥F . (38)

Putting (38) and (34) into (37), we obtain

⟨V, ∇2f(X)[V ]⟩
≥ 4(1− δ)∥V X∗T ∥2F − (6− 2δ)∥V V T ∥F (∥X −X∗∥2F + 2∥X∗∥2∥X −X∗∥F )

−∥V ∥2F ∥A∗(w)∥2 + 2λ∥V ∥2F
≥ 4(1− δ)∥V ∥2Fσ2

min(X
∗)− (6− 2δ)∥V ∥2F (∥X −X∗∥2F + 2∥X∗∥2∥X −X∗∥F )

−∥V ∥2F ∥A∗(w)∥2 + 2λ∥V ∥2F .

Due to X ∈ B(X∗, C∥X∗∥2) and the assumption −∥A∗(w)∥2 + λ ≥ −(3− δ)C∥X∗∥22, it follows
that

⟨V, ∇2f(X)[V ]⟩ ≥ (4(1− δ)σ2
min(X

∗)− (6− 2δ)(C2 + 3C)∥X∗∥22)∥V ∥2F .

By the definition of C = ξ(1−σ)(1−δ)
κ2(6−2δ) , we have

4(1− σ)(1− δ)σ2
min(X

∗) ≥ 4(6− 3δ)C∥X∗∥22 ≥ (6− 2δ)(C2 + 3C)∥X∗∥22.

Therefore,
⟨V, ∇2f(X)[V ]⟩ ≥ 4σ(1− δ)σ2

min(X
∗)∥V ∥2F ,

which implies that f is Lc-strong convex with Lc = 4σ(1− δ)σ2
min(X

∗).

A.6 Proof of Theorem 4

Proof of Theorem 4. We proceed by mathematical induction to prove this claim. As X0 = X∗

implies ∥X0H0 −X∗∥F = 0 ≤ C∥X∗∥2. Now, assuming that

∥XkHk −X∗∥F ≤ C∥X∗∥2
holds for some k, we show that it also holds for k + 1, namely,

∥Xk+1Hk+1 −X∗∥F ≤ C∥X∗∥2.

Note that

∥Xk+1Hk+1 −X∗∥F ≤ ∥Xk+1Hk −X∗∥F = ∥(Xk − η∇f(Xk))Hk −X∗∥F
= ∥XkHk − η∇f(XkHk)−X∗ + η∇f(X∗)− η∇f(X∗)∥F
≤ ∥XkHk − η∇f(XkHk)−X∗ + η∇f(X∗)∥F + η∥∇f(X∗)∥F .

(39)
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We consider the term ∥∇f(X∗)∥F in (39):

∥∇f(X∗)∥F = 2∥A∗[A(X∗X∗T )−A(X∗X∗T )− w]X∗ + 2λX∗∥F
= ∥[2λI − 2A∗(w)]X∥F
≤ ∥(2λI − 2A∗(w))∥2∥∥X∗∥F
≤ 2

√
r∗(λ+ ∥A∗(w)∥2)∥∥∥X∗∥2.

Next, we focus on the term ∥XkHk − η∇f(XkHk) − X∗ + η∇f(X∗)∥F in (39). By the mean
value theorem, it follows that

XkHk − η∇f(XkHk)−X∗ + η∇f(X∗)
= XkHk −X∗ − η(∇f(XkHk)−∇f(X∗))
= XkHk −X∗ − η∇2f(Xk(ϵ))[XkHk −X∗],

where Xk(ϵ) = X∗ + ϵ(XkHk −X∗), ϵ ∈ (0, 1). Denote Jk := ∇2f(Xk(ϵ)). Then

∥XkHk − η∇f(XkHk)−X∗ + η∇f(X∗)∥2F
= ⟨XkHk −X∗, (I − ηJk)2[XkHk −X∗]⟩
= ⟨XkHk −X∗, (I − 2ηJk + (Jk)2)[XkHk −X∗]⟩.

Since Xk(ϵ) ∈ B(X∗, C∥X∗∥2), we can choose ξ ∈ ( 4
√
r∗κ4(3−δ)(∥A∗(w)∥2+λ)

(1−δ)2∥X∗∥2
2

, 1] and σ = 1
2 .

From this, we get the following inequality:

3(1 + δ)C∥X∗∥22 = 3(1 + δ) ξ(1−σ)(1−δ)
κ2(6−2δ) ∥X∗∥22

≥ 3(1 + δ) 4
√
r∗κ4(3−δ)(∥A∗(w)∥2+λ)

(1−δ)2∥X∗∥2
2

(1−σ)(1−δ)
κ2(6−2δ) ∥X∗∥22

= 3(1+δ)
√
r∗κ2

(1−δ) (∥A∗(w)∥2 + λ)

≥ ∥A∗(w)∥2 + λ.

Also,
(3− δ)C∥X∗∥22 = (3− δ) ξ(1−σ)(1−δ)

κ2(6−2δ) ∥X∗∥22
≥ (3− δ) 4

√
r∗κ4(3−δ)(∥A∗(w)∥2+λ)

(1−δ)2∥X∗∥2
2

(1−σ)(1−δ)
κ2(6−2δ) ∥X∗∥22

= (3−δ)
√
r∗κ2

(1−δ) (∥A∗(w)∥2 + λ)

≥ ∥A∗(w)∥2.
Due to λ ≥ 0, it holds that −∥A∗(w)∥2 + λ ≥ −(3 − δ)C∥X∗∥22. From Lemmas 2 and 3, we
conclude

∥XkHk − η∇f(XkHk)−X∗ + η∇f(X∗)∥2F
≤ ∥XkHk −X∗∥2F + η2∥Jk∥2∥XkHk −X∗∥2F − 2η⟨XkHk −X∗, Jk[XkHk −X∗]⟩
≤ ∥XkHk −X∗∥2F + η2L2

s∥XkHk −X∗∥2F − 2ηLc∥XkHk −X∗∥2F .

Therefore,

∥Xk+1Hk+1 −X∗∥F
≤

√
1 + η2L2

s − 2ηLc∥XkHk −X∗∥F + 2η
√
r(λ+ ∥A∗(w)∥2)∥X∗∥2

≤
√
1 + η2L2

s − 2ηLcC∥X∗∥2 + 2η
√
r(λ+ ∥A∗(w)∥2)∥X∗∥2

=
√
1 + η2L2

s − 2ηLcC∥X∗∥2 + 1
C 2η

√
r(λ+ ∥A∗(w)∥2)C∥X∗∥2.

Under the step size condition (21), we have√
1 + η2L2

s − 2ηLc +
1

C
2η

√
r∗(λ+ ∥A∗(w)∥2) ≤ 1.

Therefore,
∥Xk+1Hk+1 −X∗∥ ≤ C∥X∗∥2.

Finally, it remains to verify that the definition of η is well-defined. It follows from (20) and the choice
of ξ and σ that

ξσ(1− σ)(1− δ)2∥X∗∥22
κ4(3− δ)

>
√
r∗(∥A∗(w)∥2 + λ).
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Rearranging the terms, we obtain

ξ(1− σ)(1− δ)

κ2(6− 2δ)
>

2
√
r∗(∥A∗(w)∥2 + λ)

4σ(1− δ)σ2
min(X

∗)
.

This further implies
ξ(1− σ)(1− δ)

κ2(6− 2δ)
>

2
√
r∗(∥A∗(w)∥2 + λ)

Lc
,

which, by definition of the constant C, can be rewritten as

Lc >
2
√
r∗(∥A∗(w)∥2 + λ)

C
.

This confirms the well-definedness of η under the stated assumptions.

A.7 Proof of Lemma 4

Proof of Lemma 4. From (39), we know that XkHk, Xk+1Hk+1 ∈ B(X∗, C∥X∗∥2). By Lemma
2 and (Beck, 2017, Lemma 5.7),

f(Xk+1Hk) ≤ f(XkHk) + ⟨∇f(XkHk), Xk+1Hk −XkHk⟩+ Ls

2
∥XkHk −Xk+1Hk∥2F .

Using the facts that f(XH) = f(X) and ∇f(XH) = ∇f(X)H for any orthogonal matrix H , we
have

f(Xk+1) = f(Xk+1Hk)
≤ f(Xk) + ⟨∇f(Xk), Xk+1 −Xk⟩+ Ls

2 ∥Xk −Xk+1∥2F
= f(Xk)− ⟨∇f(Xk), η∇f(Xk)⟩+ Ls

2 ∥η∇f(Xk)∥2F .
When η ≤ 1

Ls
, it holds that

f(Xk+1) ≤ f(Xk)− η

2
∥∇f(Xk)∥2F .

A.8 Proof of Lemma 5

Proof of Lemma 5. First, note that f is bounded below. By Lemma 4, the sequence f(XkHk)
satisfies

f(Xk+1Hk+1) ≤ f(XkHk)− η

2
∥∇f(XkHk)(Hk)T ∥2F ,

which implies that f(XkHk) is monotonically decreasing and thus convergent. Therefore,

lim
k→∞

∥∇f(XkHk)∥2F = lim
k→∞

∥∇f(XkHk)(Hk)T ∥2F = 0.

Moreover, since {XkHk} ⊆ B(X∗, C∥X∗∥2), and B(X∗, C∥X∗∥2) is closed and bounded (hence
compact), the sequence {XkHk} has at least one accumulation point X̄ in B(X∗, C∥X∗∥2). By the
continuity of ∇f , we have ∇f(X̄) = 0, and thus X̄ is a stationary point of the non-convex problem
(5).

A.9 Proof of Theorem 5

Proof of Theorem 5. From Lemma 5, we know that X̄ ∈ B(X∗, C∥X∗∥2). Then

∥M̄ −M∗∥F = ∥X̄X̄T −X∗X∗T ∥ ≤ ∥X̄ −X∗∥2F + 2∥X∗∥2∥X̄ −X∗∥F
≤ C2∥X∗∥22 + 2C∥X∗∥22.

(40)

Substituting

C =
ξ(1− σ)(1− δ)

κ2(6− 2δ)
with ξ → 4

√
rκ4(3− δ)(∥A∗(w)∥2 + λ)

(1− δ)2∥X∗∥22
, and σ =

1

2

into (40) yields the claimed result.
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